<label id="jgr5k"></label>
    <legend id="jgr5k"><track id="jgr5k"></track></legend>

    <sub id="jgr5k"></sub>
  1. <u id="jgr5k"></u>
      久草国产视频,91资源总站,在线免费看AV,丁香婷婷社区,久久精品99久久久久久久久,色天使av,无码探花,香蕉av在线
      您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
      此為臨時鏈接,僅用于文章預覽,將在時失效
      國際 正文
      發私信給AI科技評論
      發送

      2

      科普 | 12個關鍵詞,告訴你到底什么是機器學習

      本文作者: AI科技評論 2016-05-27 18:31
      導語:深度學習、增強學習、神經網絡、決策樹、支持向量機、K層交叉檢驗.....如果你都懂,請無視此文。

      今年8月,雷鋒網將在深圳舉辦一場盛況空前的全球人工智能與機器人峰會。屆時雷鋒網將發布“人工智能&機器人Top25創新企業榜”榜單。目前,我們正在拜訪人工智能、機器人領域的相關公司,從中篩選最終入選榜單的公司名單。

      如果你也想加入我們的榜單之中,請聯系:2020@leiphone.com。

       科普 | 12個關鍵詞,告訴你到底什么是機器學習

      圖片來源: toptal 

      編者按:隨著人工智能(AI)技術對各行各業有越來越深入的影響,我們也更多地在新聞或報告中聽到“機器學習”、“深度學習”、“增強學習”、“神經網絡”等詞匯,對于非專業人士來說略為玄幻。這篇文章為讀者梳理了包括這些在內的12個關鍵詞,希望幫助讀者更清晰地理解,這項人工智能技術的內涵和潛能。 

      1、  機器學習

      湯姆·米歇爾教授任職于卡內基梅隴大學計算機學院、機器學習系,根據他在《機器學習》一書中的定義,機器學習是“研究如何打造可以根據經驗自動改善的計算機程序”。機器學習在本質上來說是跨學科的,使用了計算機科學、統計學和人工智能以及其他學科的知識。機器學習研究的主要產物是算法,可以幫助基于經驗的自動改善。這些算法可以在各個行業有廣泛應用,包括計算機視覺、人工智能和數據挖掘。

      2、  分類

      分類的含義是,打造模型,將數據分類進入不同的類別。這些模型的打造方式,是輸入一個訓練數據庫,其中有預先標記好的類別,供算法進行學習。然后,在模型中輸入類別未經標記的數據庫,讓模型基于它從訓練數據庫中所學到的知識,來預測新數據的類別。

      因為這類的算法需要明確的類別標記,因此,分類算是“監督學習”的一種形式。

      3、  回歸

      回歸是與分類緊密聯系在一起的。分類是預測離散的類別,而回歸則適用的情況,是當預測“類別”由連續的數字組成。線性回歸就是回歸技術的一個例子。

       科普 | 12個關鍵詞,告訴你到底什么是機器學習

      圖片來源:KDNuggets

      4、  聚集

      聚集是用來分析不含有預先標記過的類別的數據,甚至連類別特性都沒有標記過。數據個體的分組原則是這樣的一個概念:最大化組內相似度、最小化組與組之間的相似度。這就出現了聚集算法,識別非常相似的數據并將其放在一組,而未分組的數據之間則沒那么相似。K-means聚集也許是聚集算法中最著名的例子。

      由于聚集不需要預先將類別進行標記,它算是“無監督學習”的一種形式,意味著算法通過觀察進行學習,而不是通過案例進行學習。

      5、  關聯

      要解釋關聯,最簡單的辦法是引入“購物籃分析”,這是一個比較著名的典型例子。購物籃分析是假設一個購物者在購物籃中放入了各種各樣的物品(實體或者虛擬),而目標是識別各種物品之間的關聯,并為比較分配支持和置信度測量(編者注:置信度是一個統計學概念,意味著某個樣本在總體參數的區間估計)。這其中的價值在于交叉營銷和消費者行為分析。關聯是購物籃分析的一種概括歸納,與分類相似,除了任何特性都可以在關聯中被預測到。 Apriori 算法被稱為最知名的關聯算法。

      關聯也屬于“無監督學習”的一種形式。

      科普 | 12個關鍵詞,告訴你到底什么是機器學習

      決策樹的例子,分步解決并分類的方式帶來了樹形結構。圖片來源:SlideShare

      6、  決策樹

      決策樹是一種自上而下、分步解決的遞歸分類器。決策樹通常來說由兩種任務組成:歸納和修剪。歸納是用一組預先分類的數據作為輸入,判斷最好用哪些特性來分類,然后將數據庫分類,基于其產生的分類數據庫再進行遞歸,直到所有的訓練數據都完成分類。打造樹的時候,我們的目標是找到特性來分類,從而創造出最純粹的子節,這樣,要將數據庫中所有數據分類,只需要最少的分類次數。這種純度是以信息的概念來衡量。

      一個完整的決策樹模型可能過于復雜,包含不必要的結構,而且很難解讀。因而我們還需要“修剪”這個環節,將不需要的結構從決策樹中去除,讓決策樹更加高效、簡單易讀并且更加精確。

      科普 | 12個關鍵詞,告訴你到底什么是機器學習

      右上箭頭:最大間隔超平面。左下箭頭:支持向量。圖片來源:KDNuggets。

      7、  支持向量機(SVM)

      SVM可以分類線性與非線性數據。SVM的原理是將訓練數據轉化進入更高的維度,再檢查這個維度中的最優間隔距離,或者不同分類中的邊界。在SVM中,這些邊界被稱為“超平面”,通過定位支持向量來劃分,或者通過最能夠定義類型的個例及其邊界。邊界是與超平面平行的線條,定義為超平面及其支持向量之間的最短距離。

      SVM的宏偉概念概括起來就是:如果有足夠多的維度,就一定能發現將兩個類別分開的超平面,從而將數據庫成員的類別進行非線性化。當重復足夠多的次數,就可以生成足夠多的超平面,在N個空間維度中,分離所有的類別。

      8、  神經網絡

      神經網絡是以人類大腦為靈感的算法,雖然,這些算法對真實人腦功能的模擬程度有多少,還存在很多的爭議,我們還沒法說這些算法真正模擬了人類大腦。神經網絡是由無數個相互連接的概念化人工神經元組成,這些神經元在互相之間傳送數據,有不同的相關權重,這些權重是基于神經網絡的“經驗”而定的?!吧窠浽庇屑せ铋撝?,如果各個神經元權重的結合達到閾值,神經元就會“激發”。神經元激發的結合就帶來了“學習”。

       科普 | 12個關鍵詞,告訴你到底什么是機器學習

      圖片來源:KDNuggets。

      9、  深度學習

      深度學習相對來說還是個比較新的詞匯,雖然在網絡搜索大熱之前就已經有了這個詞匯。這個詞匯在研究和業界都名聲大噪,主要是因為其他一系列不同領域的巨大成功。深度學習是應用深度神經網絡技術——具有多個隱藏神經元層的神經網絡架構——來解決問題。深度學習是一個過程,正如使用了深度神經網絡架構的數據挖掘,這是一種獨特的機器學習算法。

      10、增強學習

      對于“增強學習”最好的描述來自劍橋大學教授、微軟研究科學家Christopher Bishop,他用一句話精確概括:“增強學習是在某一情景中尋找最適合的行為,從而最大化獎勵?!痹鰪妼W習中,并沒有給出明確的目標;機器必須通過不斷試錯的方式進行學習。我們來用經典的馬里奧游戲舉個例子。通過不斷試錯,增強學習算法可以判斷某些行為、也就是某些游戲按鍵可以提升玩家的游戲表現,在這里,試錯的目標是最優化的游戲表現。

      科普 | 12個關鍵詞,告訴你到底什么是機器學習

      K層交叉檢驗的例子,在每一輪使用不同的數據進行測試(藍色為訓練數據、黃色為測試數據),方框下為每一輪的驗證精度。最終的驗證精度是10輪測試的平均數。圖片來源:GitHub。

      11、K層交叉檢驗

      交叉檢驗是一種打造模型的方法,通過去除數據庫中K層中的一層,訓練所有K減1層中的數據,然后用剩下的第K層來進行測驗。然后,再將這個過程重復K次,每一次使用不同層中的數據測試,將錯誤結果在一個整合模型中結合和平均起來。這樣做的目的是生成最精確的預測模型。

      12、貝葉斯

      當我們討論概率的時候,有兩個最主流的學派:經典學派概率論看重隨機事件發生的頻率。與之對比,貝葉斯學派認為概率的目標是將未確定性進行量化,并隨著額外數據的出現而更新概率。如果這些概率都延伸到真值,我們就有了不同確定程度的“學習”。

      Via KDNuggets

       科普 | 12個關鍵詞,告訴你到底什么是機器學習

      雷峰網原創文章,未經授權禁止轉載。詳情見轉載須知

      分享:
      相關文章
      當月熱門文章
      最新文章
      請填寫申請人資料
      姓名
      電話
      郵箱
      微信號
      作品鏈接
      個人簡介
      為了您的賬戶安全,請驗證郵箱
      您的郵箱還未驗證,完成可獲20積分喲!
      請驗證您的郵箱
      立即驗證
      完善賬號信息
      您的賬號已經綁定,現在您可以設置密碼以方便用郵箱登錄
      立即設置 以后再說
      主站蜘蛛池模板: 97久久精品人人澡人人爽| 粗了大了 整进去好爽视频| www熟女com| 成人精品三级在线观看| 97人妻免费碰视频碰免| 色综合久久88色综合天天提莫| 92成人午夜福利一区二区| 人妻?制服?丝袜| 久久天天躁狠狠躁夜夜av| 精品 无码 国产观看| 中文无码乱人伦中文视频在线| 日本三级欧美三级人妇视频黑白配| 中山市| 男女啪啪免费观看网站| 天天躁日日躁狠狠躁av麻豆| 日韩精品人妻一区二区中文八零| 狠狠躁夜夜躁人人爽天天bl| 久久精品国产亚洲av麻豆长发| 国产精品无码人妻一区二区在线| 国产精品香港三级国产av| 中国猛少妇色xxxxx| www.婷婷| 欧美中文字幕精品人妻| 三级片久久| 熟女?人妻?人妻のA片| 欧美寡妇xxxx黑人猛交| 午夜国产精品福利一二| 日日碰狠狠添天天爽超碰97| 91精品亚洲一区二区三区| 国产男女猛烈无遮挡免费视频| 亚洲av午夜福利大精品| 婷婷久久综合九色综合88| 久久综合88| 麻豆国产尤物av尤物在线观看| 亚洲v欧美| 131美女爱做视频| 精东A片成人影视| 亚洲人人人| 国产超碰人人| 国产AV久久| 亚洲国产欧美在线看片一国产 |