<label id="jgr5k"></label>
    <legend id="jgr5k"><track id="jgr5k"></track></legend>

    <sub id="jgr5k"></sub>
  1. <u id="jgr5k"></u>
      久草国产视频,91资源总站,在线免费看AV,丁香婷婷社区,久久精品99久久久久久久久,色天使av,无码探花,香蕉av在线
      您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
      此為臨時鏈接,僅用于文章預覽,將在時失效
      人工智能開發者 正文
      發私信給AI研習社-譯站
      發送

      0

      SSD(單次多盒檢測)用于實時物體檢測

      本文作者: AI研習社-譯站 2018-07-24 09:56
      導語:Fast-RCNN、Faster-RCNN 等算法為目標檢測提供了更準確的結果,但它們對于實時檢測來說顯得有點慢,于是 SSD 就在這個時候應運而生。

      雷鋒網 AI 研習社按:本文為雷鋒網字幕組編譯的技術博客,原標題 SSD(Single Shot Multi-Box Detection) for real time object detection,作者 Rabin Poudyal。

      翻譯 | 陶玉龍    校對 | 佟金廣     整理 |  孔令雙

      卷積神經網絡在檢測圖像中的物體時優于其他神經網絡結構。很快,研究人員改進了 CNN 來進行對象定位與檢測,并稱這種結構為 R-CNN(Region-CNN)。R-CNN 的輸出是具有矩形框和分類的圖像,矩形框圍繞著圖像中的對象。以下是 R-CNN 的工作步驟:

      1. 使用我們稱為選擇性搜索的算法掃描輸入圖像,進而查找可能的對象,生成大約 2000 個候選區域, 

      2. 在每個候選區域上運行 CNN,

      3. 獲取每個 CNN 的輸出并將其輸入:

      • SVM 來區域進行分類

      • 線性回歸器來收緊對象的邊界框,如果對象存在

      SSD(單次多盒檢測)用于實時物體檢測

      R-CNN 運用于目標檢測

      雖然與傳統的 CNN 相比,R-CNN 在目標定位,檢測和分類方面都取得了很大進步,但在實現目標實時檢測方面依舊存在問題。以下是其中的一些問題:     

           1、訓練數據很難處理,而且耗時很長

           2、訓練分為兩個階段進行(即:候選區域的選擇和分類)

           3、網絡在推理階段很慢(處理非訓練數據時)

      為了改進 R-CNN,研究人員們相繼提出了其他算法,如 Fast-RCNN,Faster-RCNN 等。 這些算法為目標檢測提供了更準確的結果。 但它們對于實時檢測來說顯得有點慢。SSD 就在這個時候應運而生,它在準確性和計算速度方面具有良好的平衡。

      SSD(單發多邊框檢測器)的含義 

      單發:目標定位和分類在網絡的單個前向傳遞中完成 : 

      多框:邊界框回歸的技術

      檢測器:對檢測到的對象進行分類

      結構

      SSD(單次多盒檢測)用于實時物體檢測

      SSD 結構

      SSD 的結構建立在 VGG-16 的基礎上。但在這里對 VGG-16 進行了一些微小調整,從 Conv6 層開始,我們用一系列輔助卷積層來代替原先全連接層。因為 VGG-16 可以提供高質量的圖像分類和遷移學習來改善結果, 我們將其作為 SSD 的基礎網絡。通過使用輔助卷積層,我們可以提取圖像多個尺度的特征,并逐步減小每個卷積層的尺寸。我已在下一節討論了它的工作原理。您可以看到 VGG-16 架構的以下圖像, 它包含全連接層。

      SSD(單次多盒檢測)用于實時物體檢測

      VGG-16 結構

      工作機制

      SSD(單次多盒檢測)用于實時物體檢測

      為了訓練我們的算法,我們需要一個包含帶有對象的圖像的訓練集,這些對象必須在它們上面有邊界框。 通過這種方式學習,算法學習如何在對象上放置矩形框以及放置在何處。 我們通過調參使預測出的邊界框和實際的邊界框之間的誤差最小,從而優化我們的模型以正確地檢測對象。與 CNN 不同,我們不僅預測圖像中是否存在物體,還需要預測物體在圖像中的位置。在訓練期間,算法也要學習調整對象邊界框中的高度和寬度。 

      SSD(單次多盒檢測)用于實時物體檢測

      上圖是我們用于目標檢測的訓練數據集的示例。 這些數據集必須包含在圖像中標記類別的對象。 更多默認框會有更準確的檢測,但會以速度犧牲作為代價。

      Pascal VOC 和 COCO 數據集對初學者而言是一個很好的入門。

      處理尺度問題

      SSD(單次多盒檢測)用于實時物體檢測

      在左邊是一張有幾匹馬的圖像。我們將輸入圖像劃分為網格集。 然后我們圍繞這些網格制作幾個不同寬高比的矩形框。 我們在這些框中應用卷積來研究這些網格中是否存在對象。這里的一匹黑馬在圖像中更靠近攝像頭。因此,我們繪制的邊界框無法識別是否是馬,因為邊界框沒有任何可以識別馬匹的特征。

      SSD(單次多盒檢測)用于實時物體檢測

      如果我們看上述 SSD 的架構,我們可以看到在 conv6 層之后的每個步驟中圖像的大小在顯著減小。 我們討論的關于劃分網格和在這些網格上查找對象的每個操作都適用于從網絡的后面到前面的卷積的每個步驟。 分類器也應用在每個步驟中來檢測對象。 因此,由于物體在每個步驟中變得更小,它很容易識別。

      SSD 算法還知道如何從一個卷積操作返回到另一個卷積操作。 它不僅會前向運算而且會后向運算。 例如,如果它在 conv4 中看到馬,那么它可以返回到 conv6 并且將在馬周圍繪制矩形框。

      原文鏈接:

      https://medium.com/@rabinpoudyal1995/ssd-single-shot-multi-box-detection-for-real-time-object-detection-5f2a06e33a4a

      雷鋒網 AI 研習社編譯。

      號外號外~

      一個專注于

      AI技術發展和AI工程師成長的求知求職社區

      誕生啦!

      歡迎大家訪問以下鏈接或者掃碼體驗

      https://club.leiphone.com/page/home

      SSD(單次多盒檢測)用于實時物體檢測


      SSD(單次多盒檢測)用于實時物體檢測

      雷峰網原創文章,未經授權禁止轉載。詳情見轉載須知。

      SSD(單次多盒檢測)用于實時物體檢測

      分享:
      相關文章

      知情人士

      AI研習社(yanxishe.com)譯站頻道,傳播前沿人工智能知識,讓語言不再成為學習知識的門檻。(原雷鋒字幕組)
      當月熱門文章
      最新文章
      請填寫申請人資料
      姓名
      電話
      郵箱
      微信號
      作品鏈接
      個人簡介
      為了您的賬戶安全,請驗證郵箱
      您的郵箱還未驗證,完成可獲20積分喲!
      請驗證您的郵箱
      立即驗證
      完善賬號信息
      您的賬號已經綁定,現在您可以設置密碼以方便用郵箱登錄
      立即設置 以后再說
      主站蜘蛛池模板: 99久热在线精品996热是什么| 中国凸偷窥XXXX自由视频| 亚洲欧美综合中文| 另类 专区 欧美 制服| 深夜国产成人福利在线观看| 看免费真人视频网站| 性做久久久久久| 日韩在线一区二区| 人妻另类 专区 欧美 制服| 漂亮人妻洗澡被强bd中文| 刺激一区仑乱| 丁香五月激情综合| 亚洲av无码专区在线电影| 国产精品午夜福利麻豆| 惠州市| 在线色综合| 麻豆av一区二区天美传媒| 亚洲色伊人| 香港三级日本三级a视频| 国产蜜臀在线一区二区三区| 亚洲AV第一页| 丁香花电影| 精品无码一区二区三区的天堂| 亚洲韩国精品无码一区二区三区 | 久久精品久久免费懂色| 亚洲av网站| 国产精品18久久久| 国产91成人精品亚洲精品| 无码人妻一区二区三区四区| 久久男人av资源站| 國產尤物AV尤物在線觀看| 中文字幕无码人妻aaa片| 一本无码人妻在中文字幕免费| 国产精品人| 无码丰满熟妇| 久久久噜噜噜久久中文字幕色伊伊| 国产制服丝袜在线视频观看| 国语做受对白XXXXX在线| 国产在线精品一区二区三区直播| 久久波多野结衣av| 成年女人免费碰碰视频|