<label id="jgr5k"></label>
    <legend id="jgr5k"><track id="jgr5k"></track></legend>

    <sub id="jgr5k"></sub>
  1. <u id="jgr5k"></u>
      久草国产视频,91资源总站,在线免费看AV,丁香婷婷社区,久久精品99久久久久久久久,色天使av,无码探花,香蕉av在线
      您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
      此為臨時鏈接,僅用于文章預覽,將在時失效
      人工智能學術 正文
      發私信給我在思考中
      發送

      0

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      本文作者: 我在思考中 2021-09-15 11:01
      導語:該論文由哈爾濱工業大學與好未來合作,針對圖像生成中無監督解耦問題,提出了一種正交雅可比正則化用于學習解耦的生成模型。

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      作者 | 魏于翔

      編輯 | 王曄

      本文是對發表于計算機視覺和模式識別領域的頂級會議 ICCV 2021的論文“Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation(用于無監督圖像生成解耦的正交雅可比正則化)”的解讀。

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      該論文由哈爾濱工業大學與好未來合作,針對圖像生成中無監督解耦問題,提出了一種正交雅可比正則化Orthogonal Jacobian Regularization, OroJaR)用于學習解耦的生成模型。OroJaR通過約束輸入各維在輸出引起的變化之間的正交特性來實現模型的解耦,并使用輸出對輸入的雅可比矩陣表示這種變化。與之前的方法相比,OroJaR可以應用于模型的多層,并以整體方式對輸出進行約束,使得其可以更好的解耦空間相關的變化。

      論文鏈接:https://arxiv.org/abs/2108.07668

      代碼地址:https://github.com/csyxwei/OroJaR

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化
      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化
      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化


      1

      研究背景

      近年來,無監督解耦學習受到了廣泛的關注,不僅因為其對理解生成模型的重要性,也因為其對其他計算機視覺任務也有所幫助,如可控圖像生成、圖像編輯等。對于一個解耦的特征,其各維控制了輸出中不相關的變化,從給定的數據集中無監督學習到解耦的特征仍是當前人工智能領域的一個重要挑戰。

      現有的無監督解耦方法主要基于兩種主流的生成模型:變分自編碼器(Variational Autoencoder, VAE)和生成式對抗網絡(Generative Adversarial Networks, GAN)。基于VAE的方法如-VAE[1],FactorVAE[2]等主要通過約束隱變量之間的獨立性來實現解耦,但受限于VAE,這些方法生成圖像的質量往往有限。隨著GAN在圖像生成領域取得的成功,許多基于GAN的無監督解耦方法被提出。SeFa[3]通過對pretrain的GAN的第一層全連接層參數分解得到一系列解耦的隱空間方向向量。但SeFa只能作用于第一層且是后處理的方式,限制了其解耦性能。Hessian Penalty[4]通過約束輸出對輸入的Hessian矩陣是對角的來實現解耦。但其使用max函數將約束從標量函數推廣到向量函數,獨立的約束輸出的各個值使得其不能很好的解耦一些空間相關的變化(如,形狀、大小、旋轉等)。

      受上述方法的啟發,論文提出了一個用于無監督圖像生成解耦的正交雅可比正則化(OroJaR),用于更好的解耦生成模型。


      2

      方法介紹

      2.1正交雅可比正則化(OroJaR)

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化是一個生成模型,其中ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化是輸入向量,ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化表示輸入的第ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化維。ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化是網絡的輸出,ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化進一步用于表示ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化的第ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化層的輸出。論文基于一個非常直觀的想法:當改變輸入的其中一維時,其在輸出中引起的變化應該與其他維引起的變化獨立(不相關),即ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化在輸出中引起的變化是獨立的。在論文中,作者使用雅可比向量ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化表示輸入第維在輸出中引起的變化,同時為了實現解耦,作者約束輸入各維對應的雅可比向量相互正交,

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      兩個向量的正交也意味著它們是不相關的,即輸入各維所引起的變化是獨立的。考慮所有輸入維度,作者提出了正交雅可比正則化(OroJaR),來幫助模型學習到解耦的特征:

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      其中ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化表示ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化對z輸入的雅可比矩陣,ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化表示逐元素乘積。I表示單位陣,ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化表示全1的矩陣。OroJaR以整體方式對輸出進行約束,而不是像Hessian Penalty一樣獨立的約束輸出的每一個元素,這使得OroJaR可以更好的解耦復雜的、空間相關的變化。

      2.2近似訓練加速

      實際訓練時,公式 (2)中雅可比矩陣的計算是非常耗時的。為了加速運算,作者基于Hutchinson近似[4,7],將公式 (2)的計算重寫為,

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      其中V是Rademacher向量(每維為-1或1的概率為0.5),ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化表示方差計算。ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化沿著V方向的一階導數乘上ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化,其可以進一步使用一階差分近似[8]估計得到:

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      2.3在GAN中的應用

      OroJaR可以通過兩種方式應用于GAN中,一種是在訓練GAN時用作正則項,一種是用于尋找pretrain的GAN中一些解耦的方向向量。

      GAN訓練時,判別器ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化和生成器ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化迭代的使用ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化更新

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      其中ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化是某一個具體的GAN Loss。將OroJaR引入GAN的訓練后,生成器的訓練Loss調整為:

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      其中ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化用于控制不同損失之間的權重。引入ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化到GAN的訓練中可以幫模型學習到解耦的特征,從而實現可控的圖像生成。

      OroJaR也可以用于發現pretrain的GAN的隱空間中可解釋的方向。具體地,作者引入一個可學習的正交矩陣ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化,其中ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化是要學習的正交方向的個數,ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化是隱空間維度。ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化的每列存儲了要學習的正交方向。ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化的優化公式為:

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      其中ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化是一個one-hot的向量,用于索引ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化的某一列,ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化是一個標量用于控制ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化應該沿著該方向移動多遠。與公式 (7)不同的是,此時的OroJaR是對求的ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化而不是ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化。求得ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化之后,就可以通過ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化來對生成圖像進行可控的編輯。


      3

      實驗結果

      論文使用了Edges+Shoes[9]、CLEVR[4]、Dsprites[10]等數據集對OroJaR進行了詳細的定性和定量實驗。

      3.1定性實驗

      作者首先在Edges+Shoes上進行了實驗,該數據集是由5k張真實鞋子和5k張輪廓鞋子組成的真實數據集。從下圖中可以看到,雖然沒有其真實的變化因子,但SeFa[3]、Hessian Penalty[4]和OroJaR都學到了相同的變化,即鞋子的樣式和形狀,且論文提出的OroJaR具有更多樣的形狀變化。

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      下圖給出了論文提出的OroJaR與對比方法在CLEVR-Complex數據集上的定性對比,該數據集包含2個物體的5個變化因子(x軸、y軸位置、形狀、顏色、大?。???梢钥吹剑琒eFa[3]和Hessian Penalty[4]在改變一個物體的形狀或顏色時另一個物體也會隨之改變,而OroJaR可以獨立的控制左右物體的形狀和顏色,這說明OroJaR可以更好的解耦空間相關的變化。

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      下圖給出了OroJaR與對比方法在Dsprites數據集上的定性對比,該數據集是常用的解耦數據集,包含了1個物體的5個變化因子(x軸、y軸位置、形狀、角度、大?。?梢钥吹脚cSeFa[3]和GAN-VP[5]和Hessian Penalty[4]相比,OroJaR可以更好地解耦5個變化,同時成功抑制多余的維度(第6行)。

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      如上文中提到的,OroJaR同樣可以用于尋找pretrain的GAN的隱空間中一些有意義的方向向量,作者在ImageNet上pretrain的BigGAN[6]的Golden Retrievers和Churches兩個類上進行了實驗。實驗結果如下圖所示,可以看到,OroJaR可以成功找到一些有意義的控制,如旋轉,縮放,顏色等。

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      更多詳細的實驗結果請見論文。

      3.2定量實驗

      下表給出了OroJaR在Edges+Shoes和CLEVR數據集上的定量對比實驗,其中FID[12]用于衡量圖像的生成質量,PPL[11]用于衡量模型隱空間的連續性,VP[5]用于衡量模型的解耦性能??梢钥吹剑cSeFa[3]、InfoGAN[13]和Hessian Penalty[4]相比, OroJaR具有更高的VP指標,說明其更有利于模型的解耦。同時OroJaR也具有更低的PPL指標,這是因為OroJaR與StyleGAN2中提出的感知路徑正則項具有相似的約束,從而實現了更低PPL。

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      下表給出了OroJaR與對比方法在Dsprites上的VP指標對比,可以看到論文提出的OroJaR取得了更高的結果,說明了其在解耦上的優越性。

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化


      4

      結語

      論文提出了一種用于生成模型解耦的正交雅可比正則化 (OroJaR) ,其通過約束不同輸入維度引起的輸出變化(即雅可比向量)之間的正交性成功實現了模型的解耦。此外,OroJaR 可以應用于模型的多層,并以整體方式約束輸出,使其可以有效地解耦空間相關的變化。

      參考文獻
      [1] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework. 2016.
      [2] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on Machine Learning, pages 2649–2658. PMLR, 2018.
      [3] Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in gans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2021.
      [4]  William Peebles, John Peebles, Jun-Yan Zhu, Alexei A. Efros, and Antonio Torralba. The hessian penalty: A weak prior for unsupervised disentanglement. In Proceedings of the European Conference on Computer Vision, 2020
      [5] Xinqi Zhu, Chang Xu, and Dacheng Tao. Learning disentangled representations with latent variation predictability. In Proceedings of the European Conference on Computer Vision, pages 684–700. Springer, 2020.
      [6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis. In International Conference on Learning Representations, 2018.
      [7] Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076, 1989.
      [8] Clarence Hudson Richardson. An introduction to the calculus of finite differences. Van Nostrand, 1954.
      [9] Aron Yu and Kristen Grauman. Fine-grained visual comparisons with local learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 192–199, 2014.
      [10] Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.
      [11] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4401–4410, 2019.
      [12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural Information Processing Systems, pages 6629–6640, 2017.
      [13] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: interpretable representation learning by information maximizing generative adversarial nets. In Advances in Neural Information Processing Systems, 2016.
      掃碼添加小助手微信(AIyanxishe3),備注ICCV2021拉你進群。

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      雷鋒網雷鋒網雷鋒網


      雷峰網版權文章,未經授權禁止轉載。詳情見轉載須知

      ICCV 2021 | 用于無監督圖像生成解耦的正交雅可比正則化

      分享:
      相關文章
      當月熱門文章
      最新文章
      請填寫申請人資料
      姓名
      電話
      郵箱
      微信號
      作品鏈接
      個人簡介
      為了您的賬戶安全,請驗證郵箱
      您的郵箱還未驗證,完成可獲20積分喲!
      請驗證您的郵箱
      立即驗證
      完善賬號信息
      您的賬號已經綁定,現在您可以設置密碼以方便用郵箱登錄
      立即設置 以后再說
      主站蜘蛛池模板: 天堂网亚洲综合在线| 亚洲一区二区中文字幕| 亚洲欧美综合精品成人导航| 一级天堂| 97资源人妻| 午夜福利理论片高清在线| 老妇free性videosxx| 久久久亚洲精品成人| 国产亚洲蜜芽精品久久| 久久99精品久久久久久琪琪| 洋洋AV| 视频一区二区三区刚刚碰| 精品国产亚洲一区二区三区在线观看| 欧美性群另类交| 国产精品a无线| 久久精品国产只有精品96| 老司机午夜免费精品视频| 夜干夜| 中文字幕天天色色干干| 四虎av| 色五月丁香五月综合五月亚洲| 最近中文字幕完整版hd| 国禁国产you女视频网站| 亚洲欧洲AV| 国产香蕉九九久久精品免费| 强行无套内谢大学生初次| 国产一区二区三区av高清| 亚洲人成网7777777国产| 九九精视频| 狠狠cao日日穞夜夜穞av| 五月婷婷丁香| 国内精品人妻色欲无码久久久| 国产美女69视频免费观看| 免费国产麻豆传| 免费激情网址| 国内熟女中文字幕第一页| 国产精品夜夜爽7777777| 欧美中文字幕无线码视频| 与子敌伦刺激对白播放的优点| 永久免费AV无码网站大全| 级毛片内射视频|