<label id="jgr5k"></label>
    <legend id="jgr5k"><track id="jgr5k"></track></legend>

    <sub id="jgr5k"></sub>
  1. <u id="jgr5k"></u>
      久草国产视频,91资源总站,在线免费看AV,丁香婷婷社区,久久精品99久久久久久久久,色天使av,无码探花,香蕉av在线
      您正在使用IE低版瀏覽器,為了您的雷峰網賬號安全和更好的產品體驗,強烈建議使用更快更安全的瀏覽器
      此為臨時鏈接,僅用于文章預覽,將在時失效
      人工智能 正文
      發私信給汪思穎
      發送

      0

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      本文作者: 汪思穎 2017-09-27 16:46
      導語:對于圖像編輯任務,現在面臨的兩個重要的挑戰分別是:如何提升生成圖像的質量和如何靈活控制生成圖像內容。如何解決,王超岳帶來詳細解讀。

      雷鋒網 AI科技評論按,近些年來,生成對抗網絡在許多圖像生成和圖像編輯任務上都獲得了很大的成功,并受到越來越多的關注。對于圖像編輯任務,現在面臨的兩個重要的挑戰分別是:如何指導網絡向目標圖像學習(以提升圖像編輯的效果)和如何感知輸入圖像內容(以提升圖像編輯的精度)。

      悉尼科技大學 FEIT 三年級博士生,優必選悉尼AI研究院訪問學生,陶大程教授學生王超岳在雷鋒網 AI研習社主辦的學術青年分享會上結合他的兩篇論文Tag Disentangled Generative Adversarial Networks for Object Image Re-rendering(IJCAI 2017 Best student paper)和Perceptual Adversarial Networks for Image-to-Image Transformation(arXiv 2017),分享了對圖像編輯做出的相應探索。

      分享內容如下:

      常見的圖像編輯有圖像去雨(雪)、圖像填充、素描到照片、風格轉換、圖像超分辨率、圖像上色、圖像旋轉、時間變換等,抽象來說就是給定一張圖像以及要求,來生成新的圖像。即讓機器理解圖像和生成圖像。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      生成對抗網絡是由Goodfellow在2014年提出的,算是一種新的網絡架構,可以做有監督或無監督的學習。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      基于GANs的圖像編輯框架如下所示:

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      接下來介紹第一篇論文,用于圖像轉換任務的感知對抗網絡(Perceptual Adversarial Network,PAN)。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      近兩年基于GANs的框架,有很多不同的優化,下圖是對Pixel-wise loss、GANs loss和Perceptual loss的對比工作。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      Pixel loss優點是使用簡單、訓練速度快、穩定,缺點是輸出圖像模糊,質量低。

      GAN loss優點是能提升生成圖像質量,更加真實,銳利,缺點是學習整體生成分布,無法單獨使用。

      Perceptual loss優點是注重圖像包含的高維特征,感知效果,缺點是受限于預訓練的其他網絡。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      下面是對提升生成圖像質量做出的一些研究,引入不同的loss來生成不同的輸出圖像。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      他們希望有新的loss函數來彌補現有的問題,持續縮小生成圖像和真實圖像的差距。基于這樣的想法提出了感知對抗損失。優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      使用感知對抗損失的理由如下:

      感知:衡量生成圖像和真實圖像的高維特征的差異,并致力于縮小他們。

      對抗:當現有高維特征的差異小于一定數值m ,D網絡被更新以尋找新的高維空間,以進一步縮小仍存在的不同。

      統一:所有訓練統一在一個GAN框架中,無需引入其他預訓練網絡,且不受任務限制。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      他們引入感知對抗loss加GAN loss的結構,在這里引入GAN loss來讓生成圖像的整體分布符合真實圖像的整體分布。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      下面是針對于這個網絡的相關實驗,主要有圖像的去雨、從分割后的label的圖像到街景的重現、衛星圖到谷歌地圖的轉換、圖像補全、素描生成真實圖像的任務。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      下面是對比圖像去雨雪的任務,他們的模型在色差的控制等方面都有所提升。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      下面是圖像補全任務,對比CVPR 2016的Context Encoder,PAN能得到更加優化的效果。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      進行Pixel2pixel實驗時與pix2pix做了對比,也可以看到明顯提升。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      解決圖像生成的質量之后,還有一個問題:interpretable。也就是如何解開神經網絡的黑箱,并幫助計算機進一步理解圖像。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      針對于如何在圖像轉換過程中理解整個網絡,并控制中間層信息的表征,他們提出標簽分解生成對抗網絡(Tag Disentangled Generative Adversarial Networks, TDGAN),用于進行目標圖像的再次渲染(Re-rendering)。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      給定輸入圖像,里面會包含一系列的輸入信息,人腦看到之后很容易分理出這些信息,但之前的網絡很難理解這些信息,因此很難對輸入圖像進行精細編輯,現在他們想要讓網絡能更進一步理解這些信息。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      他們提出分解表征法。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結


      解決方案:標簽。只要簡單的改變標簽,就能很容易生成微笑的圖像。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      基于此,他們提出TDGAN,包括下圖四個子網絡。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      網絡的框架圖如下:

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      主要有f1、f2、f3、f4四個約束項:

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      這四個子網絡采用如下交替訓練的形式:

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      下面是工作相應的實驗結果,給定單張椅子,給定一些想要的角度,可以生成不同角度的效果,另外可以生成人在不同光線及表情下的效果。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      下圖是他們在兩個數據集下做的一些任務。可以通過給定單張椅子照片,生成不同角度的椅子;也可以控制輸入人臉圖像的多種性質,如改變其角度,光照,表情等。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      總結如下:現有的很多方法都是在GANs的框架下,希望提升現有的圖像編輯效果和提升圖像編輯的精度,他們做了以下嘗試,去讓任務表現更好。

      第一是從學習的層面,不再只是從像素層面或固定高維空間上去縮小真實圖像和轉換圖像之間的不同,而是利用對抗學習的思想去持續尋找并縮小真實圖像和轉換圖像之間尚存的差異。另一方面,他們希望算法可以更深入的理解圖像,并幫助計算機能更加智能,通過提取和分解圖像中包含的各種信息,讓算法可以更精確的編輯圖像,從而得到想要的結果。

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      Perceptual Adversarial Networks for Image-to-Image Transformation

      論文地址:https://arxiv.org/abs/1706.09138

      Tag Disentangled Generative Adversarial Networks for Object Image Re-rendering

      論文地址:https://www.ijcai.org/proceedings/2017/0404.pdf

      本次分享的視頻如下:

      雷鋒網 AI科技評論整理編輯。

      雷峰網原創文章,未經授權禁止轉載。詳情見轉載須知

      優必選悉尼 AI 研究院王超岳:基于生成對抗網絡的圖像編輯方法 | 分享總結

      分享:
      相關文章

      編輯

      關注AI學術,例如論文
      當月熱門文章
      最新文章
      請填寫申請人資料
      姓名
      電話
      郵箱
      微信號
      作品鏈接
      個人簡介
      為了您的賬戶安全,請驗證郵箱
      您的郵箱還未驗證,完成可獲20積分喲!
      請驗證您的郵箱
      立即驗證
      完善賬號信息
      您的賬號已經綁定,現在您可以設置密碼以方便用郵箱登錄
      立即設置 以后再說
      主站蜘蛛池模板: 黄色免费在线网址| 色二区| 日本A在线| 97久久超碰国产精品2021| 成人无号精品一区二区三区| 国产精品丝袜一区二区三区| 男女裸体影院高潮| 久久久久国产a免费观看rela| 精品无码黑人又粗又大又长| 91一区二区| 久久精品少妇高潮a片免费观| 性欧美老人牲交xxxxx视频| 99视频精品| 99色色网| 爆乳美女午夜福利视频| 无码人妻久久一区二区三区免费丨| 亚洲 欧美 清纯 校园 另类| 精品亚洲国产成人| 勐海县| 欧美激情中文字幕在线一区二区| 国产精品久久无码一区二区三区网| 91视频污| 欧美国产日本高清不卡| 婷婷开心深爱五月天播播| 香蕉久久福利院| 精品无码一区二区三区的天堂| 国产19p| yyyy11111少妇无码影院| 91丨九色丨人妻丨白浆| 亚洲人成欧美中文字幕| 国产精品无码不卡在线播放| 国产成人精品免费久久久久| 国产片av片永久免费观看| 久久精品国产亚洲av忘忧草18| 色哟哟AV| 伊人毛片| av无码电影一区二区三区| 一本大道无码人妻精品专区 | 香港三日本8a三级少妇三级99| 亚洲黄色AV| 亚洲.无码.制服.日韩.中文字幕|